Filter-dependent versions of the uniform boundedness principle
نویسندگان
چکیده
For every filter F on N, we introduce and study corresponding uniform F-boundedness principles for locally convex topological vector spaces. These generalise the classical boundedness sequences of continuous linear maps by coinciding with these when equals Fréchet cofinite subsets N. We determine combinatorial properties which ensure that hold space. Furthermore, several types spaces, also isolate are necessary validity principles. infinite-dimensional Banach space X, obtain in this way exact characterisations those filters true X.
منابع مشابه
Computable Versions of the Uniform Boundedness Theorem
We investigate the computable content of the Uniform Boundedness Theorem and of the closely related Banach-Steinhaus Theorem. The Uniform Boundedness Theorem states that a pointwise bounded sequence of bounded linear operators on Banach spaces is also uniformly bounded. But, given the sequence, can we also effectively find the uniform bound? It turns out that the answer depends on how the seque...
متن کاملTHE UNIFORM BOUNDEDNESS PRINCIPLE IN FUZZIFYING TOPOLOGICAL LINEAR SPACES
The main purpose of this study is to discuss the uniform boundednessprinciple in fuzzifying topological linear spaces. At first theconcepts of uniformly boundedness principle and fuzzy equicontinuousfamily of linear operators are proposed, then the relations betweenfuzzy equicontinuous and uniformly bounded are studied, and with thehelp of net convergence, the characterization of fuzzyequiconti...
متن کاملUniform Boundedness Principle
The following two propositions are true: (1) For every sequence s1 of real numbers and for every real number r such that s1 is bounded and 0 ≤ r holds lim inf(r s1) = r · lim inf s1. (2) For every sequence s1 of real numbers and for every real number r such that s1 is bounded and 0 ≤ r holds lim sup(r s1) = r · lim sup s1. Let X be a real Banach space. One can verify that MetricSpaceNormX is co...
متن کاملUniform Boundedness Principle for operators on hypervector spaces
The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.
متن کاملThe Uniform Boundedness Principle for Order Bounded Operators
Under appropriate hypotheses on the spaces, it is shown that a sequence of order bounded llnear operators which is poJntwJse order bounded is uniformly order bounded on order bounded subsets. This result is used to establish a Banach-Stelnhaus Theorem for order bounded operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2021
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2020.124705